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Recently, Gomperts, Variyar, and Kivelson [J. Chem. Phys. 98, 31 (1993)] analyzed Brillouin
linewidth data for triphenylphosphite and found a striking wave vector dependence which varied
strongly with temperature. We present a simple explanation based on a Debye relaxation model
from which results similar to theirs are obtained even though the longitudinal viscosity has no
intrinsic wave vector dependence. We also explore the quantitative differences between their results
and those obtained with the Debye model, and show that these differences can be explained by the
two-step structural relaxation dynamics predicted by mode coupling theory and observed in recent

neutron- and light-scattering experiments.

PACS number(s): 64.70.Pf, 78.35.4+c, 83.50.Fc

Brillouin scattering (or ultrasonic) studies of liquids
near and below the melting temperature T,, charac-
teristically reveal a Brillouin linewidth Aw (or ultra-
sonic attenuation) that increases with decreasing tem-
perature, passes through a maximum, and then de-
creases again. The linewidth (or attenuation) maximum
occurs when the average structural relaxation time 7,
which increases monotonically with decreasing tempera-
ture, passes through 1/wg where wq is the Brillouin (or
ultrasonic measurement) frequency.

This linewidth can be related to a generalized longi-
tudinal viscosity 7r,(g,w) whose w dependence, which is
related to the structural relaxation dynamics, has been
extensively investigated. However, there has been very
little study of the ¢ dependence of 7y, which can, in prin-
ciple, probe the extent of spatial correlations that have
often been discussed in connection with the liquid-glass
transition. Furthermore, different ¢ dependences of 7y,
may occur in fluids of neutral molecules or ionic fluids as
discussed, e.g., by Giaquinta, Parrinello, and Tosi [1].

In a recent publication Gomperts, Variyar, and Kivel-
son (GVK) (2] analyzed the ¢ dependence of Brillouin
linewidths in the molecular glass-forming liquid triph-
enylphosphite determined from both conventional and
time-resolved [3] Brillouin scattering experiments and
found dramatic variation with temperature. They dis-
cussed several possible explanations for their results, in-
cluding S relaxation and T¢ phenomena of the mode cou-
pling theory, but concluded that they did not have a the-
oretical interpretation of their data. In this article, we
will first explore the origin of the qualitative features of
their results and then consider their quantitative details.

The polarized (VV) light-scattering spectrum of a sim-
ple nonrelaxing fluid described by conventional linearized
hydrodynamics can be written in a simple form if the
very-low-frequency region containing the central thermal-
diffusion mode is neglected:
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where wg = Cog (Cp is the adiabatic sound velocity).
The damping constant 7° is given by [4]

2wy

I(w) = %Im[wg —w

0 ¢ 4 2 Cp
¥ ==(nB+3ns)+4q DT<——1) . (2a)

p Cv
The second term in Eq. (2a), due to thermal diffusion, is
usually small in nonmetallic liquids and will be ignored.
The combination (g + 37s), where np is the bulk (or
volume) viscosity and 7s the shear viscosity, is designated
as the longitudinal viscosity 71, so that

o ¢
= 77111 . (2b)

From Eq. (1), if v° < wo, one finds that for w close to
wo,

1
e ((wo =nE (70/2)2) ' @)

The Brillouin components, centered at wp = Fwo =
+Clogq, are therefore Lorentzians with half width at half
maximum
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Equations (1)—(4a) follow from the Navier-Stokes equa-
tions, which describe liquids not exhibiting structural
relaxation effects. (The absence of relaxation is indi-
cated by the superscript on 4°.) In order to describe
liquids exhibiting structural relaxation, one can use Eq.
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(4a) to define a generalized longitudinal viscosity nf =
[2(¢, w)]w=ws(q) in terms of the Brillouin linewidth Aw:

2
nE = q—ZAw . (4b)

Fluids exhibiting structural relaxation are frequently de-
scribed by introducing a relaxing memory function m(t),
with Laplace transform m(w) = [i f;° e***m(t)dt],—,, into
the hydrodynamic formalism. Equation (3) for I(w) is

then replaced by

[y + m"(w)]

O e @ + ol e

where v is the frequency-independent damping, which is
a generalization of v° in Eq. (1) [i.e., v contains all “fast”
damping processes not explicitly represented by m(w)].

Momentum conservation requires that in the ¢ — 0
limit, both v and m(w) must be proportional to g2. The
resulting longitudinal viscosity n; = (p/q?)[y + m" (v =
0)] will exhibit intrinsic ¢ dependence only if v/¢% or
m' (w = 0)/¢* depends on gq.

The position of the Brillouin peaks wp is now deter-
mined by the roots of

[w? = {wg —wm/(W)}]* =0, (6)

and the half width Aw is given by

Aw = %[7 +m"(wg)] . (7)

Equation (5) is a generalization of Eq. (1), with all
the unknown physics of structural relaxation hidden in
m(w), while Egs. (6) and (7) are an approximation that
is only valid if m(w) is nearly constant over the frequency
interval Aw. Equations (6) and (7) have been previously
employed, e.g., in the interpretation of stimulated Bril-
louin scattering data [3].

The most elementary model for m(t) is the Debye
single-relaxation approximation mp(t) = §2e~*/7 for
which [with the same Laplace transform convention used
for Eq. (5)]

—82wt?
D(“‘J) = 1 +w27_2 (Sa)
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If one writes v = (¢2/p)Ne and 62 = (¢*/p)Goo,
Egs. (8) then correspond to Maxwell’s viscoelastic the-
ory, where 7o, and G, denote the regular viscosity and
the high-frequency longitudinal elastic modulus, respec-
tively. In Maxwell’s approach 7., and G, are assumed
not to show strong temperature dependence. The strong
temperature dependence of 77, = 7)o + GooT results from
the temperature dependence of the Maxwell relaxation
time 7.

The implications of Egs. (8) for I(w) were first ana-
lyzed by Mountain [5]. With this model for m(w), Eq.

(8a) predicts that the Brillouin components are centered
at +wpg, where

) 1/2
wp = | w2 — _ . (9)
*© 1+ wir?

In Eq. (9), weo = (wd 4 0%)1/2 = Coq and Cy is the
high-frequency adiabatic sound velocity. The Brillouin
half width Aw is given approximately by Egs. (7) and
(8) as

1 83T

Using the generalization of 7z, suggested by Egs. (4b)
and (10), we find

2
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Note that nP defined by Eq. (11) will exhibit ¢
dependence even if v/g?, &/q, 7, and, therefore,
[7L(g, w)]w=constant dO not, because of the implicit ¢ de-
pendence of wg which is approximately proportional to g.
However, for wpT << 1, the generalized viscosity n? re-
duces to the g-independent hydrodynamic limit discussed
above.

Let us examine the implications of Eq. (10) for the
quantities introduced by GVK in their linewidth analy-
sis. To do this with realistic parameters, we start from
the Brillouin scattering study of salol by Dreyfus et al.
[6] (but neglecting the Cole-Davidson 3 # 1). We gen-
erated the Aw(q,T) of Eq. (10) using a Vogel-Fulcher
approximation for 7(T):

log7(T) = —15.5 + 777/(T — 176) (12a)
and temperature-independent values with “normal” g¢-
dependence for the remaining parameters:

Coo = 2.1 x 10° cm sec™ ! . (12b)
§/g =15 x 10° sec™ !, (12¢)
v/q* = 0.01 sec™! . (12d)

These parameters approximate the values found for salol
(T, = 315 K, T, = 218 K) in Ref. [6].

Using these parameters, we calculated Aw of Eq. (10)
for T between 220 K and 320 K, for wave vectors ¢ in the
range

3.0 <log;pq < 5.6 (cm™'),

which is the same range studied by GVK. The resulting
values of log1o(Aw) vs logio(g) are shown in Fig. 1 for
T= 220, 250, 290, and 330 K.

We next fit these data to the same fitting function
utilized by GVK:
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Aw = B(T)¢™D) . (13)

The fits are also shown in Fig. 1 by the solid lines. In
Fig. 2 we show the resulting values of log10B and a. We
find that o = 2.0 at high and low temperatures, but ex-
hibits a steep minimum at T' ~ 290 K, near the tempera-
ture at which log B is a maximum. The results shown in
Figs. 1 and 2 are qualitatively similar to those shown by
GVK. It is surprising that the log(Aw) vs log(g) curves
are so close to straight lines over a range of 2.5 decades
in ¢ which corresponds to the largest range covered by
GVK. Like GVK we find oscillations around the straight
line fit to our “data” for T' = 290 K which is close to the
temperature where Fig. 2(a) exhibits a maximum and
Fig. 2(b) a minimum. Our results suggest that the in-
direct ¢ dependence of Aw due to the g dependence of
wp makes it effectively impossible to infer the intrinsic g
dependence of 7 (g,w) from Brillouin linewidth data.
While the elementary Debye relaxation model explains
the qualitative form of the GVK results, including the
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FIG. 1. logio(Aw) vs logio(g) found from Eq. (10) with
the parameters of Eq. (12) (points) and linear fits (lines) for
T = 220, 250, 290, and 330 K. Note that 330 K is above T
while 220 K is ~ Ty.
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dip in o and the peak in B that occur between Ty, amd
T,, quantitative differences remain. Comparing a(7T') of
Fig. 2 with Fig. 3 of GVK, two significant differences are
observed. First, the minimum in a(7T) found by GVK is
~ 0.9 while the minimum in Fig. 2 is more pronounced,
~ 0.4. Second, in Fig. 2, a(T) increases rapidly with
decreasing T below the minimum, reaching a = 2 at
temperatures well above Ty. GVK, however, find that o
increases slowly with decreasing T', reaching a maximum
value of @ ~ 1.3 at T,. Although these differences could
be reduced by allowing the intrinsic damping constant
v in Eq. (10) to be temperature dependent, and replac-
ing the Debye relaxation approximation by a stretched
exponential (Kohlrausch) function, it is more instructive
to explore the extent to which the quantitative form of
a(T) found by GVK can be explained by invoking a more
general description of m(w).

In the remainder of this paper we will show how experi-
mentally determined susceptibility spectra of supercooled
liquids and theoretical predictions of the mode coupling
theory can explain the GVK results. To this end we first
reexpress Aw of Eq. (7) in terms of a susceptibility spec-
trum x”(w).

For the Debye model, xp(w) = x(0)/(1 — iwT) so that

x(0)wT

Xp(w) = Wit (14)
From Egs. (8b) and (14),
62
mpw) = o) (150)

Note that §2 = (C%, — C2)q?, while wg = Cgg. If we
neglect the ¢ dependence of Cp, then

(15b)
(C% — Cd)/

m,I’J(w) & wx'll)(w) )

where the proportionality constant =
C3x(0).

Finally, we generalize Eq. (15b) to any m"(w). Ab-
sorbing v into x”, Eq. (7) then becomes

Aw = Dng"(wg), (16)
where D is a g-independent constant. Equation (16) al-
lows the g-dependent Brillouin linewidth Aw to be pre-
dicted directly from the susceptibility function x”(w).
Note that the introduction of X" (w) is merely a change of
notation motivated by the common use of susceptibility
spectra in the discussion of glassy relaxation.

Since w = Cpgq, one finds for the exponent « in Eq.
(13)

dllog (Aw)] _ dllog (Aw)]

dflog (q)] dllog @)] (172)
while from Eq. (16),

dllog (Aw)] . . dflog(x"(w)]

diog @]~ “dllog )] (am)

Therefore, we can write
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@6 FIG. 2. Values of log10B and « found from
S 27 ° ® 1.2 fits to Eq. (13). Note the steep minimum in
4 a and maximum (incipient cusp) in logioB
° near 280 K.
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a=14+S§ (18) (1) At high temperatures, where the o peak is well

where S = %‘és"—]n is the slope of the x"(w) curve on
a log-log plot.

Recent neutron- [7] and light-scattering [8] experi-
ments have shown that in supercooled nonnetwork liquids
X" (w) exhibits a form in close agreement with predictions
of the mode coupling theory (MCT) [9]. There is a low-
frequency stretched « peak (a generalization of the Debye
peak) which moves toward lower frequency with decreas-
ing temperature, a high-frequency nearly T-independent
microscopic (boson) peak, and between these two peaks
the (-relaxation region centered on a minimum between
the w™? high-frequency wing of the a peak and the w*®
critical decay spectrum leading to the boson peak.

In Fig. 3 we show a set of x"'(w) spectra for calcium
potassium nitrate (CKN) found from depolarized light-
scattering experiments [8,10]. These spectra have been
extrapolated to frequencies below the experimental range
(0.3 GHz-5 THz) by fitting the o peaks to Kohlrausch
functions.

To illustrate the application of Eq. (18), we first show
four theoretical susceptibility spectra x”(w) in Fig. 4.
They have been evaluated as solutions to the schematic
F,, model of MCT (see Eq. (3.9a) in Ref. [9]). This
model, which specifies mode coupling effects with only
two coupling constants V; and V2, was invented to
demonstrate in a schematic manner some of the essen-
tial findings of the full MCT. The slope S is to be av-
eraged over the frequency range (corresponding to the
measured ¢ range) indicated by the vertical dashed lines.
In this figure, we have selected a smaller w range than
in Fig. 1 in order to demonstrate the evolution of slope
S with temperature. The figure illustrates four specific
situations that occur with decreasing temperature.

above the measurement range, S is determined by the
slope of the low-frequency wing of the a peak as S =1
so that a = 2.

(2) As T decreases, the o peak moves down through
the measurement range, S decreases through S = 0 and
reaches its minimum value of S = —b when the mea-
surement range coincides with the high-frequency (von
Schweidler) wing of the a peak, so that omin = 1 —b.
Note that the maximum of B occurs when the Brillouin
linewidth is largest, i.e., when the a peak moves through
the center of the measurement range. This corresponds
to S = 0 and therefore should occur at a temperature
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FIG. 3. x"'(w) spectra of CKN obtained from depolarized
light-scattering experiments. The data were extended be-
low 0.3 GHz by fitting the o peaks to Fourier-transformed
Kohlrausch function (from Ref. [10]). The sharp lines near 20
GHz are residues of the longitudinal acoustic Brillouin com-
ponents not removed by the polarizer.
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FIG. 4. x"(w) computed with the schematic idealized Fi,
model of MCT with A = 0.7, a = 0.33, b = 0.64, and V> = 2.0.
For curves (1) - (3) (T > T¢), V1 = 0.828 —0.4/2™ withn = 2
(curve 1), n = 8 (curve 2), n = 12 (curve 3). For curve (4)
(T < Tc), V1 = 0.828 + 0.4/25. [T decreases monotonically
from (1) to (4).]

somewhat above that at which a reaches its minimum.

(3) With decreasing T the a peak moves completely
out of the measurement range and so does the minimum
of the B-relaxation region. S then increases through S =
0 up to a maximum S = a, the slope of the critical decay
region, so that a =1+ a.

(4) When T decreases through T¢, the crossover tem-
perature of MCT, the form of x"(w) changes. The a peak
and B minimum both disappear (in the idealized version
of MCT considered here) and there appears a “knee”
where the slope crosses over from S = a above the knee
to S = 1 below the knee. Since the knee moves to higher
frequency with decreasing T', it should eventually move
up through the experimental window and at sufficiently
low temperatures a should increase from a = 1 + a to
a = 2. The temperature at which this increase will oc-
cur also depends on the range of ¢ values included in the
analysis.

We therefore expect that at high temperatures a = 2;
with decreasing T', o decreases monotonically to a mini-
mum of 1 — b. Then « increases again and reaches 1 + a
for T ~ T¢, eventually increasing again to 2. The depth
of the minimum and the value of the low-T" maximum
should thus be determined by the two critical exponents
a and b. Whether this full range of a(T") will actually
be observed, however, depends on the range of q values
included in the experiment. Note that this discussion re-
covers the results of the Debye.model discussed earlier if
one sets a = b = 1, assuming that v has been included
as shown in Eq. (5).
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Another interesting result of this analysis can be seen
by extending the w range in Fig. 4 to more closely match
the range in Fig. 1 and Ref. [2]. For intermediate tem-
peratures [e.g., curve (2)], the slope will have significant
variation with w, leading to a departure from linearity
as found by GVK. Also, since the average slope in this
larger range will never reach —b, the minimum in a(T)
will not reach the predicted lower bound of 1 — b.

The preceeding discussion shows that the MCT for
m(w) implies results for a(T) which are closer to reality
than the predictions of the simple Maxwell viscoelastic
theory.

In Fig. 5 we have plotted a(T") found from an analysis
of the CKN data of Fig. 3 following Eq. (18). The ¢
range over which S was averaged for constructing Fig. 5
was again 3.0 < log,, ¢ < 5.6, corresponding to 0.04 <
w < 16 GHz (with an average value for Cg = 2.5 x 10°
cm/sec). Our result for CKN in Fig. 5 is clearly closer to
the experimental results of GVK than Fig. 2(b). Since we
have shown in detail in Ref. [8] that the data in Fig. 3 fit
the results of MCT, we conclude that this theory provides
the essential explanation of the results reported by GVK.
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FIG. 5. o(T) vs T for CKN from fits of Eq. (18) to the
CKN x"(w) of Fig.3. The slope was averaged over the range
0.04 to 16 GHz, corresponding to the ¢ range 10° to 4 x 10°
cm™!, taking Cp = 2.5 x 10° cm/sec.
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In conclusion, we have shown that the qualitative fea-
tures found by GVK in their fits of Brillouin linewidth
data to Eq. (13), a maximum in B(T) and a minimum
in a(T) somewhere between T, and T, are simple con-
sequences of structural relaxation that are predicted by
any model, even the simple Debye model. The differences
between the detailed predictions of the Debye model and
the results of GVK indicate that the detailed relaxation
dynamics affect the form of a(T) and B(T). Although

we consider it unlikely that Brillouin linewidth data can
be interpreted to yield the actual form of the relaxation
function, we have demonstrated that the x"(w) found
from other experimental and/or theoretical procedures
can provide a consistent explanation of the GVK results.

We thank M. Fuchs for providing the program used to
generate Fig. 4. This research was supported by NATO
Collaborative Research Grant No. CRG-930730.
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